Financial Machine Learning


Financial Machine Learning
Financial Machine Learning
Open Access

Book Details

Authors Bryan Kelly, Dacheng Xiu
Publisher University of Chicago
Published 2023
Edition 1st
Paperback 160 pages
Language English
ISBN-13 9781638282907
ISBN-10 1638282900
License Open Access

Book Description

Financial Machine Learning surveys the nascent literature on machine learning in the study of financial markets. The authors highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping machine learning tools, as well as for statisticians and machine learners seeking interesting financial contexts where advanced methods may be deployed.

This survey is organized as follows. Section 2 analyzes the theoretical benefits of highly parameterized machine learning models in financial economics. Section 3 surveys the variety of machine learning methods employed in the empirical analysis of asset return predictability. Section 4 focuses on machine learning analyses of factor pricing models and the resulting empirical conclusions for risk-return tradeoffs. Section 5 presents the role of machine learning in identifying optimal portfolios and stochastic discount factors. Section 6 offers brief conclusions and directions for future work.


This book is published as open-access, which means it is freely available to read, download, and share without restrictions.

If you enjoyed the book and would like to support the author, you can purchase a printed copy (hardcover or paperback) from official retailers.

Download and Read Links

Share this Book

[localhost]# find . -name "*Similar_Books*"


Machine Learning Yearning

Algorithms

AI is transforming numerous industries. Machine Learning Yearning, a free ebook from Andrew Ng, teaches you how to structure Machine Learning projects. This book is focused not on teaching you ML algorithms, but on how to make ML algorithms work. After reading Machine Learning Yearning, you will be able to: - Prioritize the most promising direction

Python Machine Learning Projects

Python

As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions - sometimes without final input from humans who may be impacted by these findings - it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers

Azure Machine Learning

Azure

This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and princ

Efficient Learning Machines

Analytics

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, cla

Foundations of Machine Learning, 2nd Edition

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis a

Introduction to Data Science

R

Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data vi