Machine Learning in Sports

Open Approach for Next Play Analytics


Machine Learning in Sports
Machine Learning in Sports

Book Details

Author Keisuke Fujii
Publisher Springer
Published 2025
Edition 1
Paperback 127 pages
Language English
ISBN-13 9789819614448, 9789819614455
ISBN-10 9819614449, 9819614457
License Open Access

Book Description

This book provides cutting-edge work on machine learning in sports analytics, emphasizing the integration of computer vision, data analytics, and machine learning to redefine strategic sports analysis. This book not only covers the essential methodologies of capturing and analyzing real sports data but also pioneers the integration of real-world analytics with digital modeling, advancing the field toward sophisticated digital modeling in sports.

Through a seamless blend of theoretical frameworks and practical applications, the book illustrates how these integrated technologies can be utilized to predict, evaluate, and suggest next plays in sports. By leveraging the power of machine learning, the book presents cutting-edge approaches to sports analytics, where data from actual games is enhanced with predictive simulations for strategic planning and decision-making. The use of digital modeling in sports opens up new dimensions of interaction between the physical play and its digital analysis, offering a comprehensive understanding that was previously unattainable.

This book is an essential read for postgraduates, researchers, and technologists, who are interested in sports analysts. The book consists of five parts: Part I, which comprises a single chapter exploring the fundamentals and scope of learning-based sports analytics; Parts II, III, IV, and V review the various aspects of this field, including data acquisition with computer vision, predictive analysis and play evaluation with machine learning, potential play evaluation with learning-based agent modeling, and future perspectives and ecosystems on the field. This structure provides a comprehensive overview that will engage and inform researchers and practitioners interested in the intersection of analytical research and cutting-edge technology in sports.


This book is published as open-access, which means it is freely available to read, download, and share without restrictions.

If you enjoyed the book and would like to support the author, you can purchase a printed copy (hardcover or paperback) from official retailers.

Download and Read Links

Share This Book

[localhost]# find . -name "*Similar_Books*"


Efficient Learning Machines

Analytics

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, cla

Python Machine Learning Projects

Python

As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions - sometimes without final input from humans who may be impacted by these findings - it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers

Python Data Science Handbook

Python Pandas

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all - IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other relate

Deep Learning with JavaScript

JavaScript

Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of t

Managing Cloud Native Data on Kubernetes

Kubernetes Cloud

Is Kubernetes ready for stateful workloads? This open source system has become the primary platform for deploying and managing cloud native applications. But because it was originally designed for stateless workloads, working with data on Kubernetes has been challenging. If you want to avoid the inefficiencies and duplicative costs of having separa

Rethinking the Internet of Things

IoT

Apress is proud to announce that Rethinking the Internet of Things was a 2014 Jolt Award Finalist, the highest honor for a programming book. And the amazing part is that there is no code in the book. Over the next decade, most devices connected to the Internet will not be used by people in the familiar way that personal computers, tablets and smart