Practical Machine Learning
A Beginner's Guide with Ethical Insights
Book Details
| Authors | Ally S. Nyamawe, Mohamedi M. Mjahidi, Noe E. Nnko, Salim A. Diwani, Godbless G. Minja, Kulwa Malyango |
| Publisher | CRC Press |
| Published | 2025 |
| Edition | 1st |
| Paperback | 226 pages |
| Language | English |
| ISBN-13 | 9781032782164, 9781032770291, 9781003486817 |
| ISBN-10 | 1032782161, 1032770295, 1003486819 |
| License | Creative Commons Attribution-NonCommercial-NoDerivatives |
Book Description
The book provides an accessible, comprehensive introduction for beginners to machine learning, equipping them with the fundamental skills and techniques essential for this field.
It enables beginners to construct practical, real-world solutions powered by machine learning across diverse application domains. It demonstrates the fundamental techniques involved in data collection, integration, cleansing, transformation, development, and deployment of machine learning models. This book emphasizes the importance of integrating responsible and explainable AI into machine learning models, ensuring these principles are prioritized rather than treated as an afterthought. To support learning, this book also offers information on accessing additional machine learning resources such as datasets, libraries, pre-trained models, and tools for tracking machine learning models.
This book is available under a Creative Commons Attribution-NonCommercial-NoDerivatives license (CC BY-NC-ND), which means that you are free to copy and distribute it, as long as you attribute the source, don't use it commercially, and don't create modified versions.
If you enjoyed the book and would like to support the author, you can purchase a printed copy (hardcover or paperback) from official retailers.
Download and Read Links
Share this Book
[localhost]# find . -name "*Similar_Books*"
Machine Learning Yearning
AI is transforming numerous industries. Machine Learning Yearning, a free ebook from Andrew Ng, teaches you how to structure Machine Learning projects. This book is focused not on teaching you ML algorithms, but on how to make ML algorithms work. After reading Machine Learning Yearning, you will be able to: - Prioritize the most promising direction
Python Machine Learning Projects
As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions - sometimes without final input from humans who may be impacted by these findings - it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers
Azure Machine Learning
This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and princ
Graph Algorithms
Learn how graph algorithms can help you leverage relationships within your data to develop intelligent solutions and enhance your machine learning models. With this practical guide, developers and data scientists will discover how graph analytics deliver value, whether they're used for building dynamic network models or forecasting real-world behav
Efficient Learning Machines
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, cla
Foundations of Machine Learning, 2nd Edition
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis a